Interrater reliability in myofascial trigger point examination

Robert D. Gerwin a, b, *, Steven Shannon c, d, Chang-Zern Hong e, f, David Hubbard g, h, Richard Gevirtz i

a Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
b Pain and Rehabilitation Medicine, Bethesda, MD, USA
c Physical Medicine and Rehabilitation Service, Fitzsimmons Army Medical Center, Aurora, CO, USA
d Department of Physical Medicine and Rehabilitation, Walter Reed Army Hospital, Washington, DC, USA
e Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, CA, USA
f National Cheng Kung University Hospital, Taipei, Taiwan, ROC
g Department of Neurology, University of California San Diego, San Diego, CA, USA
h Pain Rehabilitation Service, Sharp HealthCare, San Diego, CA, USA
i California School of Professional Psychology, San Diego, CA, USA

Received 17 May 1996; revised version received 30 July 1996; accepted 13 August 1996

Abstract

The myofascial trigger point (MTrP) is the hallmark physical finding of the myofascial pain syndrome (MPS). The MTrP itself is characterized by distinctive physical features that include a tender point in a taut band of muscle, a local twitch response (LTR) to mechanical stimulation, a pain referral pattern characteristic of trigger points of specific areas in each muscle, and the reproduction of the patient’s usual pain. No prior study has demonstrated that these physical features are reproducible among different examiners, thereby establishing the reliability of the physical examination in the diagnosis of the MPS. This paper reports an initial attempt to establish the interrater reliability of the trigger point examination that failed, and a second study by the same examiners that included a training period and that successfully established interrater reliability in the diagnosis of the MTrP. The study also showed that the interrater reliability of different features varies, the LTR being the most difficult, and that the interrater reliability of the identification of MTrP features among different muscles also varies.

Keywords: Myofascial pain syndrome; Myofascial trigger point; Muscle pain; Interrater reliability; Physical examination

1. Introduction

Myofascial pain syndrome (MPS) is a common cause of pain in clinical practice (Sola et al., 1955; Fishbain et al., 1986; Skootsky et al., 1989; Fricton, 1990). It is characterized by the myofascial trigger point (MTrP; Travell and Simons, 1983) (Table 1), an exquisitely tender point (TeP) in a taut band (TB) of muscle. When the MTrP is mechanically stimulated, the TB contracts producing a local twitch (LTR) response. Mechanical stimulation of the MTrP by palpation or by needling the trigger point (TrP) also produces the phenomenon of referred pain (Ref P) that is felt at a distance from the point of stimulation. The zone where Ref P is perceived can be local in the muscle or adjacent sites, or may be distant. Manual stimulation of the MTrP reproduces or aggravates the spontaneously occurring pain of the active TrP. Range of motion is restricted due to the TB and pain of the TrP, weakness without muscle atrophy.

Table 1

Clinical features of the myofascial trigger point

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Point tenderness on a taut muscle band</td>
</tr>
<tr>
<td>2. Local twitch response</td>
</tr>
<tr>
<td>3. Referred pain</td>
</tr>
<tr>
<td>4. Reproduction of usual pain</td>
</tr>
<tr>
<td>5. Restricted range of motion</td>
</tr>
<tr>
<td>6. Weakness without atrophy</td>
</tr>
<tr>
<td>7. Autonomic symptoms</td>
</tr>
</tbody>
</table>

* Corresponding author. Pain and Rehabilitation Medicine, 7830 Old Georgetown Road, Suite C-15, Bethesda, MD 20814, USA. Tel.: +1 301 6560220; fax: +1 301 6540333.
occurs, and autonomic phenomena occur with TrP stimulation of certain muscles such as the sternocleidomastoid muscle. These physical features of the MTrP are the clinical signs by which the MTrP is identified. Identification of the MTrP is essential for diagnosis and subsequent treatment of the MPS. The easiest and most common way to identify the MTrP clinically is by manual palpation of the muscle.

Despite the clear definition of the MTrP as stated by Travell and Simons (1983), its identification by palpation requires skills in the physical examination of muscle. Moreover, the TrP has never been established as a clinical sign in a controlled study (Tunks, 1993). Consequently, questions have been raised about the MTrP and its interrater reliability (Bohr, 1995).

Reliability refers to the accuracy, consistency, stability and reproducibility of the examination technique (Hobart et al., 1996). Interrater reliability measures the agreement between two or more examiners. While two examiners constitute a valid sampling, studies involving more examiners than two increase the ability to generalize from the results. High interrater reliability also infers that there will be a low error rate associated with the MTrP examination. Three previous studies (Nice et al., 1992; Wolfe et al., 1992; Njoo and Van der Does, 1994) have examined this problem, and none of them could establish the reliability of MTrP examination in all of its major manifestations.

Wolfe et al. (1992) in a preliminary study reported good concordance among rheumatologists when identifying TrPs, but poor correlation for identification of the MTrP among examiners skilled in evaluating MPS. This study was useful as a pilot study, but suffered from several problems that we tried to avoid in the present study. The examiners met for about two hours prior to the actual subject examination phase of the study. During this time the rheumatologists were instructed in MTrP examination techniques, and the non-rheumatologists were instructed in TrP examination. Instruction in palpation of MTrPs included too many muscles of both the upper and lower extremities to permit agreement on identification characteristics of the MTrP. The study design allowed fifteen minutes to evaluate muscles in bilateral upper and lower body. This was clearly too short a time period for the myofascial exam, and the number of muscles to be examined per subject was reduced by half midway in the study.

Nice et al. (1992) likewise reported poor agreement among examiners attempting to identify TrPs by eliciting tenderness (TE) that reproduced pain and that referred pain to the area of pain complaint, without attempting to identify TBs and LTRs. The identification of the TrP in this study was a global assessment based on three features: TE, reproduction of pain (Rep P), and pain in the referral zone (i.e., pain in the area of the subject’s complaint). The latter two criteria were combined into one, namely, pain in the zone of reference for that particular TrP. Eleven percent of the responses were excluded because elicited pain was referred outside of the area of the subject’s low back pain. Nevertheless, these points may still have fulfilled the definition of a TrP. It is not clear from their examination method if the areas palpated were confined to the anatomic sites marked A, B and C in their Fig. 1, corresponding to the X marks on the diagrams in the Travell and Simons (1983) text. If so, that restriction would decrease the likelihood of finding a relevant TrP. Despite these limitations, the percent agreement for the three sites ranged from 76 to 79%. They assessed the significance of agreement by use of the kappa coefficient, which we discuss in detail later. The low kappa values that they obtained suggested to them a high likelihood of chance agreement, although inadequate split of target choices could also lead to low kappa values. This latter possibility cannot be evaluated on the basis of the data presented in their paper.

Njoo and Van der Does (1994) found TE, recognition or reproduction of the usual pain, and a palpable (taut) band to be reliable signs among different examiners when studying the quadratus lumborum and glutaeus medius muscles. Insufficient numbers of positive responses limited the evaluation of LTRs and Ref P. The examiners in this study were either an experienced general practitioner or medical students at the end of their formal training, who spent three months working with the practitioner. The implication is that the medical students were trained by the practitioner in myofascial examination techniques. No comment is made regarding when the examinations included in the study were made relative to the beginning or end of the three-month period, which would determine the extent of their training and experience in myofascial trigger point examination. The subjects selected were patients with low back pain, and the muscles selected were considered appropriate for this complaint. Hence, the study combined the objectives of evaluating the presence of TrPs in two specific muscles (quadratus lumborum and glutaeus medius) pertinent to low back pain and evaluating the reliability of identifying clinical features of MTrPs. Only the latter objective is made explicit in the study. The muscles selected can be difficult to examine for all of the features of the TrP. The quadratus lumborum is a thin, deep muscle that presents special problems in examination, especially for the identification of TBs and LTRs (Travell and Simons, 1992, pp. 64–68). The glutaeus medius muscle was examined only for the presence of its anterior TrP, which has the advantage that the muscle is not covered by the glutaeus maximus nor overlies the glutaeus minimus muscle. TE and TBs, along with Rep P and Ref P, may be identified in this area, but LTRs can be difficult to elicit. The examination was performed in the prone position, not the lateral decubitus position described by Travell and Simons (1992, pp. 157–158). A static examination evaluating the patient in only one position increases the difficulty of TrP identification. The authors picked a kappa value of 0.5 or higher as...
an indication of significant reliability. TE (including the jump sign) and recognition (or reproduction) of pain were reliable signs in both muscles. Identification of a TB was reliably made in the gluteus medius, and approached reliability in the quadratus lumborum muscle (kappa = 0.47). The data presented in this paper describes the number of times a sign was identified by one or other of two examiners, but it is not stated whether the figures cited refer to the agreement in pairs, or to the total number of times the sign was seen in the overall study population. A particular sign may have been seen in different subjects by the two examiners, but still may have added up to a similar incidence among the study population (e.g., the 29 and 25 subjects identified by two examiners respectively as having localized TE in the gluteus medius muscle out of 61 subjects examined may not have been the same 25 subjects in whom each examiner found the sign).

Attempts have been made to make or confirm the identification of the MTrP by more objective means than palpation. Fricton and Schiffman (1986) developed a craniofacial index that included a palpation index to provide a standardized measure of problems in mandibular movement. The palpation index included TE and range of motion and was highly reliable between examiners and for repeat examinations. Fischer (1988) utilized a handheld pressure threshold meter to measure the minimum force which induced pain. He combined this with measurement of soft tissue compliance (Fischer, 1987) to document TBs and other changes in muscle tissue consistency. Finally, he utilized thermographic measurement of heat emission from the skin projection of the underlying trigger point to document its presence (Fischer and Chang, 1986). These techniques have been used to quantify changes in the TrP, as a response to treatment, for example (Jaeger and Reeves, 1986), and have been very effective in clinical studies and in documenting physical findings (Ohrbach and Gale, 1989). Nevertheless, they only identify two features of the MTrP, TE and the TB. Moreover, they are difficult to use in a general pain clinic for routine examination of patients in a limited period of time, although if performed by trained personnel like physical therapists their use can be routine.

Jensen (1990) evaluated manual palpation and pressure algometry for the quantification of muscle TE, but not for other aspects relevant to the MTrP. Tanks et al. (1995) examined TrP in subjects with fibromyalgia (FM), MPS pain, and normal controls, using pressure dolorimetry and palpation. Ratings of TE by these two methods showed good intrarater reliability and consistency. The point TE did not correlate well with the location of the pain, a finding consistent with Ref P phenomena. TE alone did not permit segregation of the MPS patients from FM subjects. A new instrument called a ‘palpometer’ has been proposed for use in the study of tender myofascial tissues (Bendtsen et al., 1994). This instrument quantitates the amount of finger pressure an examiner uses to elicit TE in the target muscle. This approach does not address the issue of identifying the other characteristic features of the MTrP that distinguish it from other causes of muscle pain, and which are best identified by manual palpation.

A new finding of spontaneous electrical activity appears to have high specificity for MTrPs (Hubbard and Berkoff, 1993). The activity consists of two components, a constant low level of approximately 50 μV amplitude, and a superimposed irregular higher amplitude activity of 500–1000 μV. The origin of this activity is currently being investigated. (Simons et al., 1995a,bc; Simons, 1996) but it nevertheless serves as an electrodagnostic signature for the trigger point, and may have utility for identification of the trigger point in research studies as well as in certain clinical studies. In order to perform credible epidemiological and multicenter studies of MPS, the identification of the patient population must be certain (Yunus, 1993). Unless and until the electromyographic identification of the trigger point becomes the defining characteristic of the MTrP (and it is inconvenient for many clinical studies where more than the identification of a single MTrP is necessary), the best method of diagnosis remains the physical examination.

We therefore revisited the problem of interrater reliability, to see if the major criteria defining the TrP could be identified by different examiners. The criteria evaluated were (a) TE, (b) presence of a TB, (c) presence of Ref P, (d) LTR, and (e) reproduction of the subject’s symptomatic pain, and finally, (f) a global assessment was made regarding presence of a TrP.

2. Methods

2.1. Phase I of the study

Four physicians (two physiatrists and two neurologists) experienced in the diagnosis and treatment of MPS sequentially examined twenty-five subjects drawn from the personnel at Fitzsimmons AMC, Denver, CO. Subjects ranged from 27 to 75 years old, (mean age 50 years old). Thirteen were female, 12 were male. Inclusion criteria was age over 18 and willingness to be examined in the upper half of the body, excluding the breasts. This study did not attempt to relate the presence of MTrPs to any particular clinical diagnosis or condition, but addressed only the problem of identification of a physical feature. Therefore, no entry criteria were used to select subjects with FM, MPS, or no pain, as the presence or absence of these conditions would make no difference in the determination of the presence or absence of the physical findings. Subjects were randomized according to a Latin square, and examined in three cohorts of 8–10 subjects each. Subjects were coded by number for purposes of data analysis. Prior to examination, each subject completed a questionnaire about their pain, medications, and pertinent job activity. Ten paired muscles were examined for TE, TBs, Ref P, LTR, Rep P,
and a global assessment of whether or not a TrP was present. Muscles examined were the sternocleidomastoid, trapezius (upper and lower segments), anterior scalene, levator scapulae, infraspinatus, latissimus dorsi, teres minor, triceps and extensor digitorum. Each subject was examined in approximately 15 min. Subjects were instructed to only answer questions about their response to examination (e.g., presence of Ref P.) and not to discuss their diagnosis or treatment. Findings were graded on a ± (present/absent) basis.

The physicians held a discussion session the night before the study to clarify the muscles to be studied, and to review the nature of the physical findings to be determined.

2.2. Phase II of the study

The second phase was structured similar to the phase I study, but with some significant changes. The same four physicians participated in the study. Subjects meeting the same criteria were selected from the private practice of one of the participants (CZH) and included both patients with pain and pain-free friends or spouses of patients. Seven subjects were female, three were male. Their ages ranged from 30 to 57 years old, with a median and mean age both of 42 years. Six subjects had cervical spine injury, spondylosis, or radiculopathy, one had a piriformis syndrome, but no cervical or upper back complaints, and three subjects had no pain complaints. Subjects were again randomized for examination sequence using a Latin square distribution. Each subject was examined for fifteen minutes. Five muscle pairs were examined in order to assess reliability in different muscles, for a total of ten muscles per subject. Hence, the study was based on a comparison of one hundred muscle examinations per physician. The entire muscle was examined, except the trapezius and latissimus dorsi muscles where the upper trapezius and the axillary portion of the latissimus were examined. The five pairs of muscles examined were the sternocleidomastoid, upper trapezius, infraspinatus, latissimus dorsi, and extensor digitorum. Subjects were instructed only to answer questions about their response to the examination, and not to discuss their diagnosis or treatment.

The physicians met for three hours immediately prior to the study for a training session. Definitions of the features of the TrP were reviewed to be certain that all examiners were interpreting physical findings similarly. Each clinical sign was reviewed on a live subject (a physician or a volunteer who was not a subject in the subsequent study) before the study to clarify the muscles to be studied, and to determine how much force was required in each specific case. The individual examiner had to make the final judgment as to how much force was required in each specific case. Some of the examiners had identified the LTR largely by feel rather than by sight. We agreed that either means was acceptable, as long as the observation was definite. We agreed on a uniform way of asking about Ref P and reproduction of the subject’s pain problem (if any) that did not use leading questions. Finally, we decided to specify a TrP as absent, latent or active. An active TrP had to produce the subject’s pain. A latent TrP had to include a TeP and a TB. TE is not specific to the MTrP, but a TB distinguishes a TrP from other causes of TE. The presence of an LTR or Ref P make the identification even more certain.

Phase I of the study was approved by the Institutional Research Review Board at Fitzsimmons Army Medical Center, Department of the Army. Phase II of the study was approved by the Human Subjects Review Committee, University of California Irvine.

2.3. Statistical methods

To assess the agreement between judges an overall measure was used which represents a general observer-agreement statistic called the S_{av} (O’Donnell and Dobson, 1984). This statistic is a generalized version of the Cohen’s kappa which reports pairwise judge agreement corrected for chance agreement (Cohen, 1960). Reported is the S_{av} statistic itself (ranging from 0 to 1.0), its significance level (the likelihood that it is not really 0) and the percent agreement among all the judges. Note that when almost perfect agreement occurs, but without an adequate split of targets, kappa is not applicable. This is an important feature of the kappa statistic, which is a measure of the likelihood that the results are not simply a chance occurrence. The kappa statistic is dependent on the presence of two or more
choices and measures the strength of the relation between the variables rather than the strength of agreement itself. When all subjects have a given finding (e.g., all extensor digitorum muscles have TBs), there is an insufficient range of actual choices, and the kappa value will be low even when agreement among examiners is high (Hobart et al., 1996). In such cases the percentage agreement is reported and noted as such in the results section.

3. Results

3.1. Phase I study

Results for the phase one study were analyzed for each of the twenty muscles examined in each subject for each of the five criteria studied, and for the global assessment that a TrP was or was not present. No distinction was made in the phase I study between active and latent TrPs.

For the TE rating, 14 of 20 muscles had an \(S_{av} \) greater than zero, but most were low (average \(S_{av} \) was 0.22) and showed only slight agreement. The greatest agreement was for the left extensor digitorum which had an \(S_{av} \) of 0.55, which is considered to be of moderate agreement. The left upper trapezius had an \(S_{av} \) of 0.52. No other muscle approached significance for TE. \(S_{av} \) did not approach 0.5 for any other feature of the TrP in any muscle studied. In several instances agreement was 70% or greater, rarely over 80%, but the \(S_{av} \) was low because there was not an adequate distribution of positive and negative findings.

In summary, the phase I study failed to establish high degree of agreement among the examiners for any of the features of the MTrP or for the presence or absence of the TrP itself, except for TE in the trapezius and extensor digitorum muscles.

3.2. Phase II study

Individual muscle evaluation of the five pairs of muscles examined in each of the subjects showed a considerable variation in the number of positive and negative responses. A finding that is positive in a particular muscle in every subject cannot be evaluated using a kappa coefficient. Therefore, the actual number of positive and negative findings is shown in Table 2. The split in positive (present) and negative (absent) observations ranges from 53 negative/27 positive for Ref P from the trapezius muscles to 80 positive/0 negative, in the extensor digitorum, to an even split of 40/40 for Rep P in the infraspinatus muscles. There are a number of specific features in certain muscles where the feature was found in nearly all subjects. Only the percentage agreement is given as an indication of agreement among examiners. These features are TE in the sternocleidomastoid muscle, TBs in the sternocleidomastoid, trapezius, and in the extensor digitorum muscles, and LTR in the extensor digitorum muscle.

The percent agreement among the examiners is reported for each muscle and for each clinical sign. The significance of the agreement is expressed by the kappa coefficient \(S_{av} \) for each muscle and for each clinical sign (Table 3). A kappa of 1.0 indicates perfect agreement with an adequate split of targets. Kappa values between 0.4 and 0.6 are considered in moderate agreement. Values above 0.6 are considered in substantial agreement. Values of 0.80 or above are considered in excellent agreement (O'Donnell and Dobson, 1984). A total of thirty categories were rated, six features each in five pairs of muscles. Agreement was perfect or almost perfect in five of the categories where the kappa coefficient was not applicable. Table 3 shows that agreement was substantial or almost perfect in about 2/3 of the remaining categories, and agreement was moderate in three categories, and less than moderate in only six categories.

3.3. Assessment by muscle

<table>
<thead>
<tr>
<th>Muscle</th>
<th>TE</th>
<th>TB</th>
<th>LTR</th>
<th>Ref P</th>
<th>Rep P</th>
<th>TrP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stcm</td>
<td>+</td>
<td>78</td>
<td>79</td>
<td>72</td>
<td>37</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>Trap</td>
<td>+</td>
<td>69</td>
<td>76</td>
<td>45</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>11</td>
<td>4</td>
<td>33</td>
<td>53</td>
<td>35</td>
</tr>
<tr>
<td>Infsp</td>
<td>+</td>
<td>68</td>
<td>70</td>
<td>23</td>
<td>40</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>12</td>
<td>10</td>
<td>56</td>
<td>40</td>
<td>37</td>
</tr>
<tr>
<td>Lats</td>
<td>+</td>
<td>72</td>
<td>72</td>
<td>55</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>8</td>
<td>8</td>
<td>22</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>Exdg</td>
<td>+</td>
<td>72</td>
<td>80</td>
<td>78</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

TE, tenderness; TB, taut band; LTR, local twitch response; Ref P, referred pain; Rep P, reproduced pain; TrP, trigger point; Stcm, sternocleidomastoid muscle; Trap, trapezius muscle; Infsp, infraspinatus muscle; Lats, latissimus dorsi muscle; Exdg, extensor digitorum muscle; 0, no trigger point; L, latent trigger point; A, active trigger point.
TrP in the sternocleidomastoid muscle was high, except for the LTR where agreement was not significant (Fig. 1). Agreement was perfect or almost perfect for the features TE, TB, Rep P and for the global determination of the presence or absence of a TrP. The P value for the kappa coefficient (S_{av}) was <0.001, except for the LTR where the low rate of agreement was not significant.

Agreement among examiners for the features of the TrP in the trapezius muscle was substantial for all features except for TB where agreement was almost perfect, and for LTR, where agreement was slight. The $S_{av} P$ value was <0.001 for all features of the TrP except the LTR where its significance was $P < 0.01$. The strength of the agreement was substantial where it was not almost perfect, except for the LTR where it was slight.

Agreement for TrP characteristics in the infraspinatus muscle was substantial or almost perfect for all features except the LTR response where agreement was slight. The significance of the S_{av} was $P < 0.001$ except for the LTR where $P < 0.01$.

Agreement for the latissimus dorsi muscle was high for all TrP features, $P < 0.001$ for each appropriate S_{av}. The strength of agreement was substantial, including that for the LTR. Agreement was almost perfect for TE and for Rep P.

Agreement among the examiners for TrP features in the extensor digitorum muscle was high. It was perfect or almost perfect for identification of TB, LTR, Rep P and for the global determination of presence or absence of an active or latent TrP.

3.4. Assessment by clinical sign

Evaluation of TE showed a high percentage of agreement in all muscles (Fig. 1). Agreement was over 90% in every muscle except the infraspinatus, where there was 83% agreement. Agreement was substantial, almost perfect or perfect (100% agreement) for each muscle.

TB identification was made with a high percentage of agreement among the examiners, ranging from 83% to 100%; the P (S_{av}) was <0.05 for the infraspinatus and latissimus dorsi muscles, but agreement was almost perfect for the sternocleidomastoid, trapezius, and extensor digitorum muscles. Agreement was fair to moderate for the infraspinatus and latissimus dorsi muscles.

The LTR was less reliable than any other feature of the TrP. Nonetheless, it was found with almost perfect agreement in the extensor digitorum muscle. Agreement was low for the infraspinatus muscles at 59% and at 68% for the trapezius muscles, but was higher for the other muscles (sternocleidomastoid: 82%; latissimus dorsi: 85%; extensor digitorum: 95%). The P (S_{av}) was not significant for the sternocleidomastoid. Agreement was slight for the trapezius and infraspinatus muscles, was substantial for the latissimus dorsi, and was almost perfect for the extensor digitorum.

ReP showed good agreement for all muscles, with a kappa coefficient S_{av} of either $P < 0.001$ or almost perfect for each muscle, and a strength of agreement that was

Table 3

<table>
<thead>
<tr>
<th>Muscle</th>
<th>TE</th>
<th>TB</th>
<th>LTR</th>
<th>Ref P</th>
<th>Rep P</th>
<th>TrP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM</td>
<td>a</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trap</td>
<td>0.61</td>
<td>0.36</td>
<td>0.11</td>
<td>0.57</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td>Infra</td>
<td>0.48</td>
<td>0.40</td>
<td>0.17</td>
<td>0.84</td>
<td>0.79</td>
<td>0.65</td>
</tr>
<tr>
<td>Lats</td>
<td>1.0</td>
<td>0.46</td>
<td>0.57</td>
<td>0.71</td>
<td>0.90</td>
<td>0.79</td>
</tr>
<tr>
<td>Extdig</td>
<td>0.51</td>
<td>1.0</td>
<td></td>
<td>0.67</td>
<td>1.0</td>
<td>0.95</td>
</tr>
</tbody>
</table>

SCM, sternocleidomastoid; Trap, trapezius; Infra, infraspinatus; Lats, latissimus dorsi; Extdig, extensor digitorum.

*Indicates that there was almost complete agreement among the examiners, but without an adequate split of targets, so that the kappa coefficient is not applicable.

*Indicates that the kappa is derived from values of only one side (right or left) because the opposite side had an inadequate distribution of options and kappa did not apply. Other abbreviations as in Table 2.

Fig. 1. Percent interrater agreement. The percentage of agreement among the examiners is shown for each muscle and for each trigger point feature. The percentage of agreement was high for most of the features studied. The local twitch response showed the greatest variability in agreement and was the most difficult feature to reproduce among different examiners. Percent agreement among the different muscles studied varied for different trigger point features. Some muscles are more easily examined than others, and agreement is higher in these muscles. See the text for full discussion. Ext Dig, extensor digitorum; INFSP, infraspinatus; LAT DS, latissimus dorsi; LTR, local twitch response; RecP, referred pain; RefP, referred pain; SCM, sternocleidomastoid; TB, taut band; Te, tenderness; TraP, trapezius; TrigP, trigger point.
moderate for the sternocleidomastoid, but which was substantial or almost perfect for all other muscles tested.

Agreement for ReP P was high (sternocleidomastoid: 95%; trapezius: 93%; infraspinatus: 89%; latissimus dorsi: 95%; extensor digitorum: 100%). The kappa coefficient S_{av} was high for all muscles and the strength of agreement was substantial or almost perfect for each muscle.

Agreement for the presence or absence of a latent or active TrP varied among the five muscles from 98% for the extensor digitorum to 79% for the infraspinatus, with the other three muscles falling between (sternocleidomastoid: 93%; trapezius: 81%; latissimus dorsi: 84%). The kappa coefficient S_{av} was significant for all muscles at $P < 0.001$. The strength of agreement was substantial or almost perfect for each muscle examined.

4. Discussion

The present study shows that four examiners can achieve statistically significant agreement, at times almost perfect agreement, about the presence or absence of five major features of the MTrP and on the presence or absence of the TrP, whether it be latent or active. This establishes the MTrP as a reliable clinical sign. The present study also shows that these features are identified with greater or lesser reliability depending on the specific feature and the specific muscle being examined. The LTR was less reliable than other features like the TB. A training period was found to be essential in order to achieve these results.

This study differs from previous ones in that it focuses on the identification of TrP features, rather than on the presence of certain TrP signs in clinical conditions like low back pain, FM or MPS. Thus, it makes no difference if the subject had a pain complaint or not for the purposes of this study. All of the major features of the TrP were sought, rather than just a limited array of signs. The examinations were dynamic in that each examiner was free to reposition the subject and to use flat or pincer palpation techniques in order to facilitate the examination. Finally, a training session was incorporated into the protocol when it became clear after the first attempt to perform this study that the examiners were not all defining the features of the TrP similarly and were not all identifying the same muscles with equal ease (e.g., the anterior scalene and teres minor muscles in the first study phase). The phase II study included fewer muscles in order to allow more time for examination of each muscle.

The initial attempt to assess the agreement among four examiners evaluating subjects for five features of the MTrP showed poor interrater agreement for almost every muscle and every feature. Our clinical experience suggested to us that the poor outcome might be the study design, rather than a failure of our examination technique or a problem inherent in the nature of the TrP. Discussion among the four examiners indicated that criteria that we took for granted for the identification of certain features of the MTrP differed among the examiners. These included differences for identification of the TB and the LTR. Different examination techniques were also used; e.g., differ-
TB (100%) and LTR (98%) in the extensor digitorum, and
of TE (98%) and TBs (99%) in the sternocleidomastoid.
This was not expected prior to the study, at least not to the
degree that we found. Given the high degree of agreement
for these features and the significant agreement for most of
the other features of the MTrP where there was an ade-
quate split of present and absent TrP features, we think that
these results are also significant in demonstrating that dif-
f erent examiners can agree on the presence of these fea-
tures.

The study also showed the importance of clarifying the
definitions of the features to be identified, and the need to
be certain that each of the examiners was interpreting the
physical findings similarly. All of the examiners were
familiar with the criteria for the identification of the
MTrP from prior experience in the clinic, but a training
program was still necessary in order to introduce a level of
uniformity to the examination and the definitions used. We
believe that the same uniformity can be achieved through a
formal training program of novices, though no credible
study of the effects of such a training program has been
done as yet.

The pressure used to elicit TE, an LTR, Ref P, or to
reproduce spontaneous pain, and to identify a TB varies
with the muscle being examined, and with subject charac-
teristics. More superficial muscle needs less force to pal-
pate. Deeper muscles need a more penetrating technique.

Muscles with prominent TB and easily obtained LTR
need less palpation force than less active TrPs. We did not
quantitate TE (e.g., on a scale of 1 + to 4 +), but noted it
only as present or absent, since a TrP index has not been
used in MPS research in the way that a TeP index has been
used in the study of FM. The force of palpation was neces-
sarily less in persons with very active TrPs (very tender
muscle) than for persons with no TrPs in the muscle exam-
in ed. We believe, therefore, that there is no standard force
of palpation that applies to all TrPs.

The reliability of identification of certain features of the
TrP varies among muscles. One should not expect that a
certain feature such as a TB will be as reliable in one
muscle as another. Identification of the TB in the infraspi-
natus muscle was less certain than in the sternocleidomast-
toid or extensor digitorum. Likewise, the LTR was more
difficult to identify reliably in all muscles except the exten-
sor digitorum, showing that this feature differed from the
other features in reliability across most muscles. The
design of studies of MPS and of the MTrP must take into
account the difference in reliability of MTrP features in
different muscles. Examination of a muscle in which a
specific feature is less reliable may lead to an inconclusive
or misleading result.

The TB and TE are the most reliable of the TrP features
to identify, and the minimal criteria by which to make such
an identification. Rep P denotes a TrP as active or latent.
Ref P and the LTR are most useful as confirmatory signs of
the TrP. However, although not addressed in this study,
our experience is that Ref P, LTR and Rep P is often
elicited when placing a needle into the MTrP, even when
these features are not found by manual palpation.

One implication of this study is that researchers study-
ing MPS or the MTrP need to define the TrP for the pur-
poses of their study. The criteria by which a TrP is
identified, or the diagnosis of MPS made, needs to be
clearly stated in order to properly interpret the reliability
of the study. Many past studies merely state that the sub-
jects met the criteria established by Travell and Simons
(1983). Investigators should state whether TE alone is
used, which does not distinguish MPS from FM, or
whether a TB, Ref P, an LTR or a variable subset of
features is being used to define the clinical condition
being studied. Clearly, the identification of the MTrP
will be more specific when more features are assessed
and included in the criteria.

Multicenter studies of MPS using physical signs as a
means of identifying the TrP must demonstrate that the
persons performing the physical examination can agree
on the presence or absence of its physical features. Other-
wise, there can be no confidence that the centers are eval-
uating the same populations or looking at the same
condition.

References

Bendtsen, L., Jensen, R., Jensen, N.K. and Olesen, J., Muscle palpation with
controlled finger pressure: new equipment for the study of tender
Bohr, T.W., Fibromyalgia and myofascial pain syndrome: do they exist?
Cohen, J., A coefficient of agreement for nominal scales, Educ. Psychol.
Fischer, A.A., Tissue compliance meter for objective, quantitative doc-
Fischer, A.A., Documentation of myofascial trigger points, Arch. Phys.
Fischer, A.A. and Chang, C.H., Temperature and pressure threshold
measurements in trigger points, Thermology, 1 (1986) 212–215
Fishbain, D.A., Goldberg, M., Meagher, B., Steele, R. and Rosomoff, H.,
Male and female chronic pain patients categorized by DSM-III psychi-
Fricton, J.R., Myofascial pain syndrome: characteristics and epidemiol-
ogy. In: J.R. Fricton and E.A. Awad (Eds.), Myofascial Pain and
Fibromyalgia, Advances in Pain Research and Therapy, Vol. 17,
Fricton, J.R. and Schiffman, E.L., Reliability of a craniomandibular
Hobart, J.C., Lamping, D.D., and Thompson, A.J., Evaluating neurologic
outcome measures: the bare essentials (editorial), J. Neurol. Neuro-
Hubbard, D.R. and Berkoff, G.M., Myofascial trigger points show spon-
Jaeger, B. and Reeves, J.L., Quantification of changes in myofascial
trigger point sensitivity with the pressure algometer following passive
Jensen, K., Quantification of tenderness by palpation and use of pressure
algometers. In: J.R. Fricton and E.A. Awad (Eds.), Myofascial Pain
and Fibromyalgia, Advances in Pain Research and Therapy, Vol. 17,

